Madrid

Madrid Sinewave

This implements the Even Better Sinewave indicator as described in the book Cycle Analysis for Traders by John F. Ehlers.
In the example I used 36 as the cycle to be analyzed and a second cycle with a shorter period, 9, the larger period tells where the dominant cycle is heading, and the faster cycle signals entry/exit points and reversals.

Open-source Skript

Ganz im Spirit von TradingView hat der Autor dieses Skripts es als Open-Source veröffentlicht, damit Trader es besser verstehen und überprüfen können. Herzlichen Glückwunsch an den Autor! Sie können es kostenlos verwenden, aber die Wiederverwendung dieses Codes in einer Veröffentlichung unterliegt den Hausregeln. Sie können es als Favoriten auswählen, um es in einem Chart zu verwenden.

Haftungsausschluss

Die Informationen und Veröffentlichungen sind nicht als Finanz-, Anlage-, Handels- oder andere Arten von Ratschlägen oder Empfehlungen gedacht, die von TradingView bereitgestellt oder gebilligt werden, und stellen diese nicht dar. Lesen Sie mehr in den Nutzungsbedingungen.

Möchten Sie dieses Skript auf einem Chart verwenden?
// Madrid : 09/Jun/2015 21:09 : Even Better Sinewave : 1.0
// This implements the Even Better Sinewave indicator 
// Ref. Cycle Analysis for Traders by John F. Ehlers.
//

study("Madrid Sinewave", shorttitle="MSineWave")
Duration = input(36)
src = close

OB = 0.85, OS = -0.85
PI = 3.14159265358979

deg2rad( deg ) =>
        deg*PI/180.0

lowerBand = input(9)
ssFilter( price, lowerBand ) =>
    angle = sqrt(2)*PI/lowerBand
    a1= exp(-angle)
    b1 = 2*a1*cos(angle)
    c2 = b1
    c3 = -a1*a1
    c1 = 1 - c2 -c3
    filt = c1*(price + nz(price[1]))/2 + c2*nz(filt[1]) + c3*nz(filt[2])


// HighPass filter cyclic components whose periods are shorter than Duration input
x = src
angle = deg2rad(360)/Duration
alpha1 = ( 1-sin(angle) ) / cos(angle)
HP = 0.5*(1+alpha1)*(x-x[1]) + alpha1*nz(HP[1],0)

// Smooth with a Super Smoother Filter
Filt = ssFilter( HP, lowerBand )

Wave = ( Filt + nz(Filt[1],0) + nz(Filt[2],0) ) / 3
Pwr = ( Filt*Filt + nz(Filt[1],0)* nz(Filt[1],0) +  nz(Filt[2],0)* nz(Filt[2],0) ) /3

// Normalize the Average Wave to Square Root of the Average Power
sineWave = Wave / sqrt(Pwr)

// Output
sineWaveColor = sineWave>OB?green
            :  sineWave<OS?red
            :  change(sineWave)>0?green
            :  red

plot( sineWave, color=sineWaveColor, linewidth=3 )
plot( sineWave, color=sineWaveColor, linewidth=1, style=histogram )

hline(0, color=silver, linestyle=dotted)