# [CS] AMA Strategy - Channel Break-Out

"There are various ways to detect trends with moving averages. The moving average is a rolling filter and uptrends are detected when either the price is above the moving average or when the moving average’s slope is positive.

Given that an SMA can be well approximated by a constant-α AMA, it makes a lot of sense to adopt the AMA as the principal representative of this family of indicators. Not only it is potentially flexible in the definition of its effective lookback but it is also recursive. The ability to compute indicators recursively is a very big positive in latency-sensitive applications like high-frequency trading and market-making. From the definition of the AMA, it is easy to derive that AMA > 0 if P(i) > AMA(i-1). This means that the position of the price relative to an AMA dictates its slope and provides a way to determine whether the market is in an uptrend or a downtrend."

You can find this and other very efficient strategies from the same author here:

In the following repository you can find this system implemented in lisp:

To formalize, define the upside and downside deviations as the same sensitivity moving averages of relative price appreciations and depreciations
from one observation to another:

D+(0) = 0 D+(t) = α(t − 1)max((P(t) − P(t − 1))/P(t − 1)) , 0) + (1 − α(t − 1))D+(t − 1)
D−(0) = 0 D−(t) = −α(t − 1)min((P(t) − P(t − 1))/P(t − 1)) , 0)+ (1 − α(t − 1))D−(t − 1)

The AMA is computed by
AMA(0) = P(0) AMA(t) = α(t − 1)P(t) + (1 − α(t − 1))AMA(t − 1)

And the channels
H(t) = (1 + βH(t − 1))AMA(t) L(t) = (1 − βL(t − 1))AMA(t)

For a scale constant β, the upper and lower channels are defined to be
βH(t) = β D− βL(t) = β D+

The signal-to-noise ratio calculations are state dependent:
SNR(t) = ((P(t) − AMA(t − 1))/AMA(t − 1)) / β D−(t) IfP(t) > H(t)
SNR(t) = −((P(t) − AMA(t − 1))/AMA(t − 1)) / β D−(t) IfP(t) < L(t)
SNR(t) = 0 otherwise.

Finally the overall sensitivity α(t) is determined via the following func-
tion of SNR(t):

α(t) = αmin + (αmax − αmin) ∗ Arctan(γ SNR(t))

Note: I added a moving average to α(t) that could add some lag. You can optimize the indicator by eventually removing it from the computation.

-= Visit us: CryptoStatistical.com - Machine Trading for the Crypto Markets
Open-source Skript

Ganz im Spirit von TradingView hat der Autor dieses Skripts es als Open-Source veröffentlicht, damit Trader es besser verstehen und überprüfen können. Herzlichen Glückwunsch an den Autor! Sie können es kostenlos verwenden, aber die Wiederverwendung dieses Codes in einer Veröffentlichung unterliegt den Hausregeln. Sie können es als Favoriten auswählen, um es in einem Chart zu verwenden.

Haftungsausschluss

Die Informationen und Veröffentlichungen sind nicht als Finanz-, Anlage-, Handels- oder andere Arten von Ratschlägen oder Empfehlungen gedacht, die von TradingView bereitgestellt oder gebilligt werden, und stellen diese nicht dar. Lesen Sie mehr in den Nutzungsbedingungen.

Möchten Sie dieses Skript auf einem Chart verwenden?