27. Juli
import pandas as pd import pandas_datareader.data as web import ta import matplotlib.pyplot as plt from datetime import datetime # Fetch historical data def fetch_data(symbol, start, end): df = web.DataReader(symbol, 'yahoo', start, end) return df # Calculate indicators def apply_indicators(df): # Moving Averages df['SMA50'] = ta.trend.sma_indicator(df['Close'], window=50) df['SMA200'] = ta.trend.sma_indicator(df['Close'], window=200) # RSI df['RSI'] = ta.momentum.rsi(df['Close'], window=14) # MACD macd = ta.trend.MACD(df['Close']) df['MACD_diff'] = macd.macd_diff() return df # Identify entry points def identify_entries(df): conditions = [ (df['SMA50'] > df['SMA200']), # SMA50 above SMA200 (df['RSI'] > 50), # RSI above 50 (df['MACD_diff'] > 0) # MACD histogram positive ] df['Entry'] = (conditions[0] & conditions[1] & conditions[2]) return df # Plotting def plot_data(df): plt.figure(figsize=(14, 7)) plt.plot(df['Close'], label='Close Price') plt.plot(df['SMA50'], label='50-Day SMA') plt.plot(df['SMA200'], label='200-Day SMA') # Highlight entry points entries = df[df['Entry']] plt.scatter(entries.index, entries['Close'], color='g', label='Entry Point', marker='^', s=100) plt.title('XAUUSD Entry Points') plt.legend() plt.show() # Main function def main(): symbol = 'XAUUSD=X' start = datetime(2020, 1, 1) end = datetime.now() df = fetch_data(symbol, start, end) df = apply_indicators(df) df = identify_entries(df) plot_data(df) return df # Run the script df = main()